Citron kinase controls abscission through RhoA and anillin
نویسندگان
چکیده
The small GTPase RhoA plays a crucial role in the different stages of cytokinesis, including contractile ring formation, cleavage furrow ingression, and midbody abscission. Citron kinase (CIT-K), a protein required for cytokinesis and conserved from insects to mammals, is currently considered a cytokinesis-specific effector of active RhoA. In agreement with previous observations, we show here that, as in Drosophila cells, CIT-K is specifically required for abscission in mammalian cells. However, in contrast with the current view, we provide evidence that CIT-K is an upstream regulator rather than a downstream effector of RhoA during late cytokinesis. In addition, we show that CIT-K is capable of physically and functionally interacting with the actin-binding protein anillin. Active RhoA and anillin are displaced from the midbody in CIT-K-depleted cells, while only anillin, but not CIT-K, is affected if RhoA is inactivated in late cytokinesis. The overexpression of CIT-K and of anillin leads to abscission delay. However, the delay produced by CIT-K overexpression can be reversed by RhoA inactivation, while the delay produced by anillin overexpression is RhoA-independent. Altogether, these results indicate that CIT-K is a crucial abscission regulator that may promote midbody stability through active RhoA and anillin.
منابع مشابه
Citron kinase mediates transition from constriction to abscission through its coiled-coil domain.
Cytokinesis is initiated by constriction of the cleavage furrow, and completed with separation of the two daughter cells by abscission. Control of transition from constriction to abscission is therefore crucial for cytokinesis. However, the underlying mechanism is largely unknown. Here, we analyze the role of Citron kinase (Citron-K) that localizes at the cleavage furrow and the midbody, and di...
متن کاملDrosophila citron kinase is required for the final steps of cytokinesis.
The mechanisms underlying completion of cytokinesis are still poorly understood. Here, we show that the Drosophila orthologue of mammalian Citron kinases is essential for the final events of the cytokinetic process. Flies bearing mutations in the Drosophila citron kinase (dck) gene were defective in both neuroblast and spermatocyte cytokinesis. In both cell types, early cytokinetic events such ...
متن کاملInfluence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission.
The guanine nucleotide-exchange factor (GEF) Ect2 is essential for cytokinesis. Here we studied the subcellular localization of Ect2 and examined the consequences of either depleting or overexpressing Ect2 in human cells. We show that in mitotic cells Ect2 localizes to the central spindle and to the cell cortex. The latter association is mediated through a PH domain in Ect2 and central spindle ...
متن کاملA complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells.
The cytokinetic furrow is organized by the RhoA GTPase, which recruits actin and myosin II to the furrow and drives contractility. Here, we show that the RhoA GTPase-activting protein (GAP) p190RhoGAP-A (also known as ARHGAP35) has a role in cytokinesis and is involved in regulating levels of RhoA-GTP and contractility. Cells depleted of p190RhoGAP-A accumulate high levels of RhoA-GTP and marke...
متن کاملSticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis
In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previ...
متن کامل